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This paper presents a general algorithm for generating the isotropy subgroups of

superspace extensions of crystallographic space groups involving arbitrary

superpositions of multi-k order parameters from incommensurate and

commensurate k vectors. Several examples are presented in detail in order to

illuminate each step of the algorithm. The practical outcome is that one can now

start with any commensurate parent crystal structure and generate a structure

model for any conceivable incommensurate modulation of that parent, fully

parameterized in terms of order parameters of irreducible representations at the

relevant wavevectors. The resulting modulated structures have (3 + d)-

dimensional superspace-group symmetry. Because incommensurate structures

are now commonly encountered in the context of many scientifically and

technologically important functional materials, the opportunity to apply the

powerful methods of group representation theory to this broader class of

structural distortions is very timely.

1. Introduction

The study of structural phase transitions in crystalline solids

has greatly benefited from group-theoretical methods

(Bradley & Cracknell, 1972; Birman, 1978; Authier, 2003;

Kovalev, 1993; Toledano & Toledano, 1987; Howard & Stokes,

2005). Most commonly, the symmetry of some parent phase is

lowered by the onset of a distortion, so that the symmetries of

the parent and distorted phases have a group–subgroup

relationship. The distortion, which might involve not only

atomic displacements, but also lattice strain, site occupation or

magnetic spin, can be classified as belonging to one or

more irreducible representations (IRs) of the space-group

symmetry of the parent phase.

This IR classification gives us predictive power. Given one

or more IRs of a space group, we can use group-theoretical

methods to calculate the possible subgroup symmetries that

can arise from distortions belonging to those IRs. Such

subgroups are called isotropy subgroups. For a given set of

IRs, the complete list of possible isotropy subgroups is finite

and can be calculated. Knowing the isotropy subgroup of a

distorted structure facilitates the complete parameterization

of the physical distortion in terms of symmetry-constrained

order parameters of the relevant IRs.

The technical definition of an isotropy subgroup is as

follows: given an n-dimensional matrix representation D of a

space group G0 and some n-dimensional vector g called the

order parameter direction (OPD), the isotropy subgroup with

respect to D and g is the set of all operators g in G0 which

satisfy
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DðgÞg ¼ g: ð1Þ

For the case of superposed IRs, the representation would

contain each IR and would not of itself be reducible. For a

given representation, we consider all possible OPDs. Even

though the possible number of OPDs is infinite, the resulting

number of distinct isotropy subgroups is finite. Of course, once

we find an isotropy subgroup, we cast the OPD into its most

general form for which equation (1) is satisfied simultaneously

for every operator g in the subgroup. Generating a list of

isotropy subgroups simply means finding all possible

solutions to equation (1) for all possible vectors g. This paper

describes the algorithm for accomplishing this seemingly

simple task.

Almost 30 years ago, Stokes & Hatch (1988) implemented

on computer an algorithm for generating isotropy subgroups

and their corresponding OPDs and published a complete list

of isotropy subgroups for all IRs associated with special

k vectors (k points of symmetry) for each of the 230

crystallographic space groups. Since then, the computer

programs ISOTROPY, ISODISTORT (Campbell et al., 2006)

and ISOSUBGROUP (Stokes et al., 2016), available in

the ISOTROPY software suite (http://stokes.byu.edu/iso/

isotropy.php), have greatly extended the scope of the original

table by providing real-time calculation of isotropy subgroups

for IRs associated with non-special k vectors, and even arbi-

trary superpositions of special and non-special k vectors,

including both magnetic and non-magnetic cases.

New crystallographic and group-theoretical infrastructure

for generating the isotropy subgroups has greatly facilitated

our understanding of symmetry breaking in crystals via (i) the

fast and convenient generation of distorted structure models,

(ii) the enumeration, classification and parameterization of

families of structures arising from phase transitions (Howard

& Stokes, 2004, 2005; Carpenter & Howard, 2009; Mshumi et

al., 2014), (iii) parametric studies of order-parameter evolu-

tion (Müller et al., 2010, 2014), (iv) the symmetry-adapted

exploration of energy landscapes and transition mechanisms

(Hatt et al., 2010; Wojdeł & Íñiguez, 2010; Stroppa et al., 2011;

Yamauchi et al., 2011), and (v) the symmetry-enhanced solu-

tion and compact description of complex and/or subtle struc-

tural distortions (Peel et al., 2012; Senn et al., 2012; Campbell

et al., 2015; Khalyavin et al., 2015; Lewis et al., 2016).

A decade ago, the systematic symmetry-mode para-

meterization of crystal distortions at incommensurate k

vectors (Stokes et al., 2007) was not possible due to a lack of

critical infrastructure. At that time, there were no exhaustive

tables of (3 þ d)-dimensional superspace groups (SSGs) for

d ¼ 2 or d ¼ 3 (Stokes et al., 2011), no efficient algorithms for

establishing the equivalence of SSGs from their operators

(van Smaalen et al., 2013), no IRs of superspace extensions of

space groups (SSESGs) (Stokes et al., 2013), and no method of

generating isotropy subgroups of SSESGs or comparing them

to known (3 þ d)-dimensional SSGs. We present the solutions

to these last two problems. The projection of IR basis func-

tions at incommensurate k vectors will be treated in a later

work.

Through the recent implementation of all of these new

innovations, the ISOTROPY software suite now allows one to

generate isotropy subgroups that arise from arbitrary combi-

nations of commensurate and incommensurate k vectors,

while simultaneously parameterizing a variety of physical

order parameters (i.e. lattice strains, atomic displacements,

magnetic moments, occupancy variations and rigid-body

rotations) that can coexist and cooperate in such a distortion.

Though we will not discuss those tools in any detail, interested

readers can use them to gain immediate practical access to the

novel theoretical developments presented here.

2. Modulation vectors

A modulated distortion is characterized by the k vectors of its

physical modulation waves. Given a space group G0, the little

group Gk
0 of modulation vector k is the subgroup of G0

containing all operators for which the point part R leaves k

invariant [obeys the relation k � R�1 ¼ k (mod K), where K is

a vector of the reciprocal lattice]. The star of k is the set of

reciprocal-space vectors contained in the orbit of k with

respect to Gk
0.

To make these concepts more relevant to SSGs, where k and

�k both correspond to the same internal superspace dimen-

sion, Stokes et al. (2013) defined the little group of �k

(denoted by Gkk
0 ) as containing all operators for which

k � R�1 ¼ �k (mod K), and defined the star of �k as the set of

reciprocal-space vectors contained in the orbit of k with

respect to Gkk
0 . If no operator in G0 takes k into �k, or if

k ¼ �k (mod K) [such as k ¼ ð0; 0; 1=2Þ for a space group in a

primitive setting], then Gkk
0 ¼ Gk

0 ; otherwise, Gkk
0 is twice the

size of Gk
0 and the star of �k is half the size of the star of k. For

the sake of brevity, from this point on, we will simply use the

word ‘star’ when referring to the set of k vectors in the star of

�k.

Consider a set of modulated distortions that break the

symmetry of a parent space group, resulting in some subgroup

GS of the parent. For a given structure, the set of k vectors that

actually characterize the modulated distortions are called the

‘active’ k vectors. In general, this set can be comprised of

subsets of one or more stars in the parent.

The number of rationally independent k vectors determines

the dimension of the superspace in which the symmetry of the

distorted structure is conventionally described. By ‘rationally

independent’, we mean that the irrational parts of the k

vectors are linearly independent with respect to rational

coefficients. In the context of k vectors, we will usually shorten

‘rationally independent’ to simply ‘independent’. The active k

vectors are not necessarily rationally independent.

For a given k vector, we will write the star in the parent as

fkðFÞg, where the superscript ‘(F)’ denotes the ‘full’ star; and we

will define dðFÞ as the number of k vectors in fkðFÞg. Similarly,

we will write the set of active k vectors as fkðAÞg, where the

superscript ‘(A)’ denotes ‘active’; and we will define dðAÞ as the

number of k vectors in fkðAÞg. Lastly, we will write the set of k

vectors from fkðAÞg that are independent as fkðIÞg, where the

superscript ‘(I)’ denotes ‘independent’; and we will define
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dðIÞ as the number of k vectors in fkðIÞg. By definition,

fkðIÞg � fkðAÞg � fkðFÞg so that dðIÞ � dðAÞ � dðFÞ.
If k is active, then all other k vectors related to k by point

operations of the subgroup are also active. Thus, fkðAÞg
contains the full stars of each of its k vectors in the subgroup.

We could also say that fkðAÞg is formed as a union of active

stars in the subgroup, which are mutually disjoint by defini-

tion. The selection of a given subgroup GS restricts the

possible subsets fkðAÞg of fkðFÞg in the parent to unions of stars

in the subgroup.

3. Superspace dimensions

The symmetries of incommensurate structures are usually

described in (3 þ d)-dimensional [(3 þ d)D] superspace,

where d is the number of incommensurate modulations,

each represented by a k vector (Janner & Janssen, 1977;

de Wolff, 1974; Janssen et al., 2004; van Smaalen, 2007). The

3-dimensional part of the superspace is called the external

space and the d-dimensional part is called the internal space.

An operator in (3 þ d)D superspace can be written as an

augmented matrix:

g ¼ fRjv; dg ¼
R 0 v

M " d
0 0 1

0
@

1
A; ð2Þ

where R is a three-dimensional point operator in external

space, " is a d-dimensional point operator in internal space, v is

a three-dimensional translation in external space and d is a

d-dimensional translation in internal space which can be

interpreted in terms of phase shifts along each of the d

incommensurate modulations of the structure. R, ", M are

integer matrices such that M can be calculated from R and "
using

Mjm ¼ P3

i¼1

kjiRim �Pd
i¼1

"jikim; ð3Þ

where kji is the ith component of the jth k vector.

By convention, the operators of a given SSG are expressed

in (3 þ dðIÞ)D superspace in terms of a set fkðIÞg of dðIÞ k vectors

whose irrational components are linearly independent with

respect to rational coefficients. The dðAÞ active k vectors fkðAÞg
can be generated by performing the operation k

ðIÞ
i � R�1

j for

every point operator Rj and every independent vector k
ðIÞ
i of

the SSG. Each of the resulting vectors in fkðAÞg can be written

as linear combinations of the vectors in fkðIÞg with integer

coefficients:

k
ðAÞ
j ¼ PdðIÞ

l¼1

Tjlk
ðIÞ
l ðmodKÞ; ð4Þ

where the Tjl are integers.

SSG operators can also be presented in (3 þ dðAÞ)D super-

space, as well as in the conventional (3 þ dðIÞ)D superspace.

However, since the dðAÞ k vectors defining the ð3 þ dðAÞÞD
superspace are not generally independent, the "ðAÞ, MðAÞ and

dðAÞ parts of the operators gðAÞ in this superspace are not well

defined unless we require that each row and column of "ðAÞ

contain only one nonzero entry (�1) which reflects the fact

that, in this space, the " component of an operator merely

permutes the active k vectors. We then obtain MðAÞ using

equation (3), and obtain the dðAÞ components of dðAÞ from

�ðAÞ
j ¼ PdðIÞ

l¼1

Tjl�
ðIÞ
l ðmod 1Þ; ð5Þ

using the same integers Tjl as in equation (4). Note that when

expressed in (3 þ dðAÞ)D superspace, the dðAÞ phase shifts in

the operators are not independent, because they must obey

equation (5).

This relationship between operators in the (3 þ dðAÞ)D and

(3 þ dðIÞ)D superspaces is important since our algorithm

generates isotropy subgroups in (3 þ dðAÞ)D superspace. We

then want to identify these as entries in a table of SSGs in

(3 þ dðIÞ)D superspace.

3.1. Example 1

As an example, consider SSG 143.2.80.4

P3ð�; �; 0Þ0ð��� �; �; 0Þ0 [see ISO(3+d)D table at http://

iso.byu.edu/iso/isotropy.php]. There are two independent k

vectors (dðIÞ ¼ 2): k
ðIÞ
1 ¼ ð�; �; 0Þ and k

ðIÞ
2 ¼ ð��� �; �; 0Þ.

Using the k-vector labels of Cracknell et al. (1979), we

describe the k vectors as lying in the ‘B’ plane of the first

Brillouin zone of space group No. 143 P3. There are actually

three k vectors in fkðAÞg for this k point: k
ðAÞ
1 ¼ k

ðIÞ
1 , k

ðAÞ
2 ¼ k

ðIÞ
2

and k
ðAÞ
3 ¼ k

ðAÞ
2 R�1ð3½001�Þ ¼ �k

ðIÞ
1 � k

ðIÞ
2 ¼ ð�;��� �; 0Þ,

where 3½001� denotes a threefold rotation about the ½001� axis.

The matrix T in equations (4) and (5) is given by

T ¼
1 0

0 1

1 1

0
@

1
A: ð6Þ

In (3 þ 2)D space, the augmented matrix for the operator

3½001� is given by

gðIÞð3½001�Þ ¼

0 1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 1 0 0

0 0 0 0 0 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð7Þ

In (3 þ 3)D space, the matrix for this same operator is given

by
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gðAÞð3½001�Þ ¼

0 1 0 0 0 0 0

1 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

; ð8Þ

where the " part of the matrix has an extra row and column for

the extra k vector, and now contains only one nonzero

element in each row and column, as explained above. From

equation (5), the phase shift for k
ðAÞ
3 should be �ðAÞ

3 =

��ðIÞ1 � �ðIÞ2 , which in this case is zero since both �ðIÞ1 and �ðIÞ2

are zero.

Though the conventional setting for SSGs is in (3 þ dðIÞ)D

superspace, operators have more intuitive meaning in

(3 þ dðAÞ)D superspace, since there really are dðAÞ funda-

mental modulations. In the above example, the k
ðAÞ
3 modula-

tion is not merely a harmonic of k
ðAÞ
1 and k

ðAÞ
2 . Point

symmetries relate all three of the modulations, putting them

on equal footing. Because no parent symmetry group was

identified in this example, it would make no sense to discuss

fkðFÞg here, though one could define a parent.

4. Algorithm for generating isotropy subgroups

The SSG symmetry of a modulated structure is not a subgroup

of the crystallographic space group G0 of the unmodulated

parent structure, but it is a subgroup of a superspace extension

G of G0. In a SSESG, one adds to each operator in G0 a

continuously infinite set of translations in internal space. See

Stokes et al. (2013) for a discussion of SSESGs. Given a space

group G0 and its superspace extension G, the central problem

of this work is to generate all of the inequivalent isotropy

subgroups of G with respect to an IR associated with a k

vector containing at least one irrational component. For now,

we treat the case of a single IR, but in x5 we extend the

algorithm to multiple superposed IRs.

4.1. Selection of independent k vectors

Step 1. To generate the isotropy subgroups with dðIÞ inde-

pendent k vectors, we try every inequivalent set of dðIÞ inde-

pendent vectors from fkðFÞg. Note that two sets of k vectors are

equivalent if some external point operator R of G takes one

set into the other, to within a permutation of the vectors in the

set.

4.2. Point group HA of all possible active k vectors

Step 2. For a given set fkðIÞg of dðIÞ k vectors, we find the

external point operators of G which take each of the vectors in

fkðIÞg into linear combinations of the vectors in fkðIÞg. This may

generate extra k vectors not in fkðIÞg, which together with

those in fkðIÞg form a possible set of active k vectors. These

point operators form a point group HA, where the subscript ‘A’

denotes ‘active’. HA is the point group that leaves the set of

active k vectors invariant, to within a permutation of the

vectors.

4.3. Subgroups HS of HA

Step 3. For a given point group HA, we find all of the point

groups HS which are subgroups of HA, and consider them one

at a time, beginning with the largest, which is HA itself, and

ending with the smallest, which contains only the identity

point operator.

4.4. Active k vectors

Step 4. For a given point group HS, we let each point

operator in HS act on fkðIÞg, forming a set fkðAÞg of active k

vectors. The extra active k vectors not in fkðIÞg are then written

as a linear combination of those in fkðIÞg, as in equation (4).

This generates the coefficients Tjl that are needed in the next

step. Note that sometimes two sets of inequivalent indepen-

dent k vectors can generate equivalent sets of active k vectors.

When this occurs, we detect this equivalence and keep only

inequivalent sets of fkðAÞg for further consideration. An

example of this will be shown below.

4.5. Subgroup GS of G

Step 5. Given HS and the associated active k vectors fkðAÞg,
we next attempt to form from HS a subgroup GS of G by

adding to each operator of HS a three-dimensional fractional

translation and a set of dðAÞ phase shifts, one for each k vector

in fkðAÞg. The three-dimensional lattice of GS is the same as

that of G, so the three-dimensional fractional is simply taken

from the corresponding operator in G. We have only the

freedom to choose phase shifts for each operator but are

restricted by the following two requirements: (i) the operators

in GS must form a group with a valid multiplication table and

(ii) the phase shifts must obey the relation in equation (5)

using the coefficients Tjl determined in the previous step. [See

Stokes et al. (2011) for more details about finding the allowed

phase shifts.] We consider all possible choices of phase shifts

consistent with these restrictions. For each choice of phase

shifts that obey these restrictions, we obtain a subgroup GS

that leaves fkðAÞg invariant.

4.6. Order parameter direction

Step 6. We now must test GS to determine if it is an isotropy

subgroup for the selected IR. We require that a nonzero

vector g exists which satisfies

DðgSÞg ¼ g; ð9Þ
simultaneously for every operator gS in GS. DðgSÞ is the

n-dimensional IR matrix for the operator gS, and g is a vector

in the n-dimensional carrier space of that IR. The vector g is

called the OPD.

In the ISO-IR tables of Stokes et al. (2013), the IR matrices

were chosen to contain rows and columns of smaller matrix

blocks, one for each of the dðFÞ vectors of fkðFÞg, where each

row and column contain exactly one nonzero block matrix of
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dimension b ¼ n=dðFÞ. Because of this simple structure, the

OPD can be written as

g ¼ ðg1; g2; . . . ; gdðFÞ Þ; ð10Þ
where gi is a b-dimensional vector corresponding to the ith

vector of fkðFÞg and where only the vectors gi corresponding to

active k vectors, i.e. those of fkðAÞg, are allowed to be nonzero.

Thus, only the rows and columns in the IR matrix corre-

sponding to the active k vectors enter into equation (9). Note

that because the phase shifts for the non-active k vectors do

not enter into equation (9), there was no need to determine

them in previous steps.

4.7. Equivalent OPDs

Step 7. Each nonzero solution for g arising from equation

(9) is an isotropy subgroup, though multiple equivalent

isotropy subgroups are often generated via this procedure. We

eliminate equivalent isotropy subgroups and apply the chain

rule (Birman, 1978; Jarić, 1981, 1982) all in one step by elim-

inating isotropy subgroups with equivalent OPDs. During the

search for isotropy subgroups, we compare the OPD g with the

OPDs g0 of all previously found isotropy subgroups for the

same set fkðAÞg, regardless of which point group HS generated

it. Specifically, g and g0 are equivalent if there exists an

operator g in G for which g ¼ DðgÞg0. See Appendix A for

more details.

4.8. Find GS in ISO(3+d)D table

Step 8. For each inequivalent isotropy subgroup GS, we

further identify it with one of the entries from the ISO(3+d)D

table of SSGs at http://iso.byu.edu/iso/isotropy.php. Because

the setting of GS is in ð3 þ dðAÞÞD superspace, whereas tabu-

lated SSGs are all set in ð3 þ dðIÞÞD superspace, we must

convert each tabulated candidate to a setting in ð3 þ dðAÞÞD
superspace (see x3) before comparing it to GS, using a method

similar to that described in van Smaalen et al. (2013).

4.9. Example 2

4.9.1. Two independent k vectors (example 2a). As an

example, we consider IR �1 (SM1) of space-group No. 221

Pm3m extended to superspace. This IR belongs to a k vector

on the � (SM) line in the first Brillouin zone. The star fkðFÞg
contains six vectors: ð�;��; 0Þ, ð�; 0;��Þ, ð0; �;��Þ. Let us

specifically search for isotropy subgroups associated with

dðIÞ ¼ 2 independent modulations. (Step 1) The inequivalent

sets of dðIÞ ¼ 2 independent k vectors are found to be

ð1Þ fð�; �; 0Þ; ð�; �; 0Þg
ð2Þ fð�; �; 0Þ; ð�; 0; �Þg: ð11Þ

(Step 2) In set (1) of equation (11), the point operators in G

which take fkðIÞg into linear combinations of fkðIÞg form a

point group HA ¼ 4=mmm with the fourfold axis along the

cubic [001] direction. None of the point operators in HA

produce any extra k vectors not in fkðIÞg so that in this case

fkðAÞg ¼ fkðIÞg. In order to focus attention on the most inter-

esting scenarios, we will pass over set (1) and move on to set

(2).

The point group HA for set (2) of equation (11) is 3m with

the threefold axis along the cubic ½111� direction. In this

case, these point operators do produce an extra k vector

ð0; �; �Þ ¼ ð�; �; 0Þ � ð�; 0; �Þ not in fkðIÞg. This is a possible

active k vector, depending on the point group HS, as will be

seen. (Step 3) Detailed calculations show that only six

subgroups HS of HA result in inequivalent isotropy subgroups

for IR SM1: 3m, 32, 2=m, 2, 1, 1, where the twofold axes in the

monoclinic point groups are along the cubic [100] axis.

(Step 4) For HS ¼ 3m, the action of the point

operators produces the active k vectors fkðAÞg ¼
fð�; �; 0Þ; ð�; 0; �Þ; ð0; �; �Þg. The first two are independent

and the third can be expressed as k3 ¼ k1 � k2 ¼
ð0; �; �Þ ¼ ð�; �; 0Þ � ð�; 0; �Þ. Therefore, the dðAÞ phase shifts

in each operator in GS must satisfy �ðAÞ
3 ¼ �ðAÞ

1 � �ðAÞ
2 . (Step 5)

When we solve for the possible phase shifts in the operators of

GS under this restriction, we find two distinct solutions,

(Step 6) only one of which satisfies equation (9) and therefore

is an isotropy subgroup for IR SM1: all phase shifts in

every operator equal to zero. The resulting OPD is

g ¼ ða; 0; 0; 0; a; 0; 0; 0; 0; 0; a; 0Þ, where we have used semi-

colons to separate the parts of the OPD belonging to each of

the six arms of fkðFÞg. The three active k vectors under

consideration are the first, third and sixth arms of that star

and give rise to the nonzero parts of the OPD. (Step 8)

We identify this isotropy subgroup as 166.2.77.3

R3mð�; �; 0Þ00ð�2�; �; 0Þ00 in the ISO(3+d)D table of SSGs

(http://iso.byu.edu/iso/isotropy.php). The basis vectors of the

isotropy subgroup in terms of those of the parent can be

shown to be ð1; 0; 1; 0; 0Þ, ð0; 1; 1; 0; 0Þ, ð1; 1; 1; 0; 0Þ,
ð0; 0; 0; 1; 0Þ, ð0; 0; 0; 0; 1Þ with an origin shift ð0; 0; 0; 0; 0Þ.

We can obtain the k vectors in the setting of the subgroup in

terms of the k vectors in the setting of the parent using

information in these basis vectors. We form two transforma-

tion matrices from the basis vectors. From the first three

components of the first three basis vectors, we obtain a

transformation in external space,

AðextÞ ¼
1 0 1

0 1 1

1 1 1

0
@

1
A; ð12Þ

where we put one basis vector in each column. Similarly, from

the last two components of the last two basis vectors, we

obtain a transformation in internal space,

AðintÞ ¼ 1 0

0 1

� �
: ð13Þ

Using these transformations, we can obtain a relationship

between the k vectors in the parent and subgroup settings:

k
ðsÞ
ml ¼

P
i;j

A
ðintÞ
mi k

ðpÞ
ij A

ðextÞ
jl ; ð14Þ

where k
ðpÞ
ij is the jth component of the ith k vector in the setting

of the parent, and k
ðsÞ
ml is the lth component of the mth k vector

in the setting of the subgroup. In the present case,
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k
ðpÞ
1 ¼ ð�; �; 0Þ and k

ðpÞ
2 ¼ ð�; 0; �Þ (the two independent k

vectors), so, using equation (14), we obtain k
ðsÞ
1 ¼ ð�; �; 0Þ and

k
ðsÞ
2 ¼ ð�2�; �; 0Þ, which are identical to the k vectors in the

SSG symbol for the subgroup.

For HS ¼ 32, we obtain the same three active k vectors

as above, resulting in g ¼ ða; b; 0; 0; b; a; 0; 0; 0; 0; a; bÞ.
We identify this isotropy subgroup as 155.2.77.3

R32ð�; �; 0Þ00ð�2�; �; 0Þ00 with the same basis vectors as

above but with a nonzero origin shift ð0; 0; 0; 3=4; 1=2Þ.
For HS ¼ 2=m, none of the point operators take ð�; 0; �Þ or

ð�; �; 0Þ into ð0; �; �Þ, so now we only have two active k

vectors: fkðAÞg ¼ fkðIÞg. There are no restrictions on phase

shifts in the operators in GS since T is a unit matrix. We find

a solution where all phase shifts are zero, resulting in

g ¼ ða; 0; 0; 0; a; 0; 0; 0; 0; 0; 0; 0Þ. We identify this isotropy

subgroup as 12.2.17.13 B2=mð�; �; �Þ00ð��;��; �Þ. The basis

vectors of the subgroup are ð0; 1; 1; 0; 0Þ; ð1; 0; 0; 0; 0Þ,
ð0; 1; 1; 0; 0Þ; ð0; 0; 0; 1; 0Þ; ð0; 0; 0; 0; 1Þ with zero origin shift.

Forming the transformation matrices and applying equation

(14) to all three parent k vectors, we obtain k
ðsÞ
1 ¼ ð�; �; �Þ

and k
ðsÞ
2 ¼ ð�; �; �Þ. Comparing these vectors to those in

the SSG symbol, we see that the value of �p in the parent and

the values of �s; �s; �s in the subgroup are related by

�s ’ �s ’ �s ’ ��p. These relations are approximate because

the subgroup symmetry is sufficiently low to allow the kðsÞ

vectors to distort slightly into a more general direction.

The results for the three remaining possibilities

for HS are similar to those of HS ¼ 2=m except

that the OPDs are in more general directions. For

HS ¼ 2, we obtain 5.2.17.9 B2ð�; �; �Þ0ð��;��; �Þ0
with g = ða; b; 0; 0; a; b; 0; 0; 0; 0; 0; 0Þ; for HS ¼ 1, we

obtain 2.2.1.1 P1ð�1; �1; �1Þ0ð�2; �2; �2Þ0 with g =

ða; 0; 0; 0; b; 0; 0; 0; 0; 0; 0; 0Þ; for HS ¼ 1, we obtain

1.2.1.1 P1ð�1; �1; �1Þ0ð�2; �2; �2Þ0 with g =

ða; b; 0; 0; c; d; 0; 0; 0; 0; 0; 0Þ. The results of this example

can be readily reproduced using the internet-based

ISOSUBGROUP software.

4.9.2. Three independent k vectors (example 2b). It would

be instructive at this point to briefly examine the case with

three independent k vectors. The inequivalent sets of dðIÞ ¼ 3

independent k vectors are found to be

ð1Þ fð�; �; 0Þ; ð�; �; 0Þ; ð�; 0; �Þ;
ð2Þ fð�; �; 0Þ; ð�; 0; �Þ; ð0; �; �Þg: ð15Þ

With either of these sets fkðIÞg, every external point operator of

G takes fkðIÞg into linear combinations of fkðIÞg, so that

HA ¼ m3m. The point operators produce all six of the k

vectors in fkðFÞg. In the case where HS ¼ m3m, we have

fkðAÞg ¼ fkðFÞg for either of the inequivalent sets fkðIÞg in

equation (15). We thus consider HS ¼ m3m for only one of the

sets in equation (15) to avoid generating equivalent isotropy

subgroups. Furthermore, any other subgroup HS of HA which

generates the same set fkðAÞg for both sets fkðIÞg in equation

(15) should only be considered with one of those sets.

For the present case of HS ¼ m3m, we obtain g =

ða; 0; a; 0; a; 0; a; 0; a; 0; a; 0Þ and the ð3 þ 3ÞD SSG is

221.3.210.7 Pm3mð0; �; �Þ000ð�; 0; �Þ000ð�; �; 0Þ000.

Various other subgroups of HA result in seven additional

nonequivalent isotropy subgroups (eight total) for set (1) and

seven for set (2), none of which share the same set of active k

vectors.

5. Superposed IRs

When two or more IRs are superposed, the generation of

isotropy subgroups becomes more complicated. This could

either involve the superposition of multiple incommensurate

IRs or the superposition of incommensurate and commensu-

rate IRs. We only consider cases that have at least one

incommensurate IR, i.e. its k vectors have at least one irra-

tional component.

5.1. Incommensurate IRs

First of all, consider the relatively simpler case of two or

more superposed incommensurate IRs. We follow the same

algorithm as in x4 but with the following minor modifications.

In Step 1, we select one or more independent k vectors for

each IR. (Note that if two IRs are associated with the same

star, we require that they share the same independent k

vectors.)

In Step 2, we form the point group HA with point operators

that simultaneously take each set of independent k vectors

into linear combinations of themselves.

In Step 6, we require that for each IR, there exists a nonzero

OPD which satisfies equation (9) simultaneously for every

operator in GS.

5.2. Incommensurate and commensurate IRs

Now consider the more complicated case when one or more

incommensurate IRs are superposed with one or more

commensurate IRs. Commensurate IRs are associated with k

vectors having all rational components.

We first generate a list of isotropy subgroups GC of G that

arise from the superposed commensurate IRs alone (see

Appendix B; the subscript ‘C’ denotes commensurate k

vectors). For our purposes here, we include in the list all

equivalent isotropy subgroups, including each of the domains

of each isotropy subgroup. We then follow the same algorithm

as in x4 but with the following modifications.

In Step 1, we select one or more independent k vectors for

each incommensurate IR.

We split Step 3 into two steps. In Step 3a, we consider the

commensurate isotropy subgroups GC, one at a time. Let HC

be the point group of subgroup GC.

In Step 3b, we identify subgroups HS of HA that are also

subgroups of HC (i.e. HS 	 HC \HA) and consider these one

at a time. We consider only subgroups for which the

commensurate part of the resulting OPD is equal to that of the

selected GC. See the example below for clarification.
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In Step 5, we note that the three-dimensional lattice of GS is

the same as that of GC; so we form GS by attaching to each

point operator in HS the three-dimensional fractional for that

operator in GC.

In Step 6, we require that for each incommensurate IR,

there exists a nonzero OPD which satisfies equation (9)

simultaneously for every operator in GS.

5.3. Example 3

As an example, we extend example 2a by superposing a

commensurate IR ��
4 (GM4�) associated with k ¼ 0 which

itself yields four commensurate isotropy subgroups: GC =

R3m, Amm2, Cm and P1. The inequivalent sets of active

incommensurate k vectors for dðIÞ ¼ 2 are the same as in

equation (11), where we will again consider in detail only set

(2). As before, the point group HA is 3m with the threefold

axis along the cubic ½111� direction.

For GC ¼ R3m (threefold axis along the cubic ½111�
direction), the commensurate part of the OPD is ða; a; aÞ.
One of the subgroups of HA (3m) is equal to HC

(3m). Choosing HS ¼ 3m, we obtain the isotropy

subgroup 160.2.77.3 R3mð�; �; 0Þ00ð�2�; �; 0Þ00 with OPD

ða; a; ajb; 0; 0; 0; b; 0; 0; 0; 0; 0; b; 0Þ. Here we use the vertical

bar j to separate the parts of the combined OPD belonging to

IRs GM4� and SM1.

One other subgroup of HC \HA generates an additional

inequivalent isotropy subgroup in which the commensurate

part of the OPD is equal to ða; a; aÞ. For HS ¼ 3, we

obtain 146.2.73.1 R3ð�; �; 0Þ0ð��� �; �; 0Þ0 with OPD

ða; a; ajb; c; 0; 0; c; b; 0; 0; 0; 0; b; cÞ.
For GC ¼ Amm2, the commensurate part of the OPD is

ð0; a; aÞ, The largest point group which is a subgroup of both

HC ¼ mm2 and HA ¼ 3m is HS ¼ 2 with the twofold axis

along the cubic ½100� direction. Using HS ¼ 2, we obtain the

isotropy subgroup 5.2.17.9 B2ð�; �; �Þ0ð�; �; �Þ0 with OPD

ð0; a; ajb; c; 0; 0; b; c; 0; 0; 0; 0; 0; 0Þ.
Note that HS ¼ 2 is also a subgroup of 3m, but we did not

include it when considering GC ¼ R3m since the commensu-

rate part of the OPD for that case is not ða; a; aÞ but ð0; a; aÞ.
When considering subgroups of HC \HA, we consider only

those for which the commensurate part of the OPD is equal to

that of GC.

There are two additional isotropy subgroups, one for

GC ¼ Cm and one for GC ¼ P1, which we will not analyze in

detail.

6. Conclusion

Since the 1960s, a wealth of new crystallographic and group-

theoretical infrastructure had been developed for exploring

symmetry-lowering distortions of crystalline materials.

Whereas these capabilities were previously restricted

primarily to distortions involving only commensurate order

parameters, we now demonstrate their extension to the

general case of incommensurate order parameters. Here, we

present a general algorithm to generate isotropy subgroups

involving arbitrary superpositions of multi-k order parameters

from incommensurate and commensurate k vectors, resulting

in modulated structures possessing (3 þ d)D superspace-

group symmetry. Several examples are described in detail.

We believe the algorithm to be sufficiently general to apply

to any incommensurate crystal modulation, regardless of the

dimension of the resulting superspace-group symmetry. The

scope of potential applications includes theoretical, compu-

tational and experimental investigations of any material

classes where incommensurate modulations are possible.

Incommensurate structure models generated using this algo-

rithm can be completely parameterized in terms of order

parameters of irreducible representations of the parent

symmetry group, while also being fully constrained by the

relevant (3 þ d)D superspace group. We note that the

ISODISTORT and ISOSUBGROUP programs of the

internet-based ISOTROPY software suite have now been

extended to make use of this algorithm for cases with up to

d ¼ 3 superspace dimensions.

APPENDIX A
Equivalent isotropy subgroups

Two isotropy subgroups G1S and G2S are equivalent if there

exists an operator g in the parent G such that

gðG1SÞg�1 ¼ G2S: ð16Þ
Since they are isotropy subgroups, there are corresponding

OPDs g1 and g2 such that

Dðg1Þg1 ¼ g1 and Dðg2Þg2 ¼ g2 ð17Þ
for any g1 2 G1S and any g2 2 G2S. Combining equations (16)

and (17), we obtain g2 ¼ Dðg1Þg1. For our purposes, this

provides a more useful criterion for equivalence: two OPDs g1

and g2 generate equivalent isotropy subgroups if there exists

an operator g in G such that

g2 ¼ DðgÞg1: ð18Þ
We say that these two OPDs are equivalent.

We can also use equation (18) to generate all equivalent

OPDs for an isotropy subgroup. Whenever we find a new

isotropy subgroup not equivalent to any previously found

isotropy subgroup, we save not only its OPD but all equivalent

OPDs as well. Then, whenever we generate an isotropy

subgroup, we can compare its OPD with those on the saved list

and quickly find out whether or not it is a new inequivalent

subgroup.

The chain rule (Birman, 1978; Jarić, 1981, 1982) states that if

two isotropy subgroups have a group–subgroup relation and if

they both have the same subduction frequency, we do not keep

the smaller of the two. This rule can be restated as follows. If

two isotropy subgroups have the same OPD, we keep the one

with the larger index with respect to the parent. So, if we

generate isotropy subgroups with a decreasing number of

point operators, we simply discard any new isotropy subgroup

with an OPD equivalent to that of a previously found isotropy

subgroup.
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For commensurate IRs, generating a complete list of

equivalent OPDs is straightforward. We first expand the

parent group G in terms of cosets of the subgroup GS:

G ¼ P
i

giGS; ð19Þ

where fgig are the coset representatives. We put each coset

representative, one at a time, into equation (18).

Because the resulting list may contain some OPDs which

are equal to one another, we eliminate the duplicates. Though

the symbolic forms of two OPDs may appear to be different,

we say that they are equal if their variables can take on

nonzero values that make the OPDs numerically equal.

The general form of an OPD is given by

�j ¼
Pns
i¼1

ai�
ðAÞ
ij ; ð20Þ

where ai are arbitrary parameters and ns is called the

subduction frequency (number of independent parameters in

the OPD). To make equality immediately apparent, we bring

each OPD into a ‘standard’ form by bringing the matrix �ðAÞ

into row echelon form using linear row operations. In this

form, the first nonzero element of each row occurs in a column

where it is the only nonzero element. We also normalize each

row so that the first nonzero element is equal to 1.

As an example, consider the OPD

g ¼ ða1 þ a2; a1; a2Þ ¼ a1ð1; 1; 0Þ þ a2ð1; 0; 1Þ: ð21Þ
Bringing the general-form matrix

�ðAÞ ¼ 1 1 0

1 0 1

� �
ð22Þ

into row echelon form, we obtain

�ðAÞ ¼ 1 0 1

0 1 1

� �
ð23Þ

and the standard form,

g0 ¼ a1ð1; 0; 1Þ þ a2ð0; 1; 1Þ ¼ ða01; a02; a01 � a02Þ: ð24Þ
Note that for a01 ¼ a1 þ a2 and a02 ¼ a1, these two OPDs g and

g0 are exactly equal.

For incommensurate IRs, the generation of all equivalent

OPDs becomes impossible in practice. The parent symmetry

group G is a space group extended to superspace and contains

one or more phase shifts with undetermined and continuously

variable values between 0 and 1. The isotropy subgroup GS is

an SSG with discrete phase shifts that are determined. Thus,

there are an infinite number of cosets in equation (7) and

accordingly an infinite number of distinct equivalent OPDs.

IR matrices of operators g in G can have a particularly

simple form (Stokes et al., 2013):

DðgÞ ¼ QðdÞPðRÞ; ð25Þ
where R is the three-dimensional point operator in external

space and d is the dðAÞ-dimensional vector containing the

phase shift for each incommensurate modulation. Note that

DðgÞ does not depend on the three-dimensional translations in

external space since the IR maps all lattice translations onto

the unit matrix.

Let H be the point group of G and let HS be the point group

of GS. We expand H in terms of cosets of HS:

H ¼ P
i

RiHS; ð26Þ

where the coset representatives Ri are now point operators.

Similar to equation (18), we can form a list of equivalent

OPDs with respect to point groups using

g2 ¼ PðRiÞg1 ð27Þ
for each coset representative Ri.

The remaining infinite number of equivalent OPDs could in

theory by generated by

g3 ¼ QðdÞg2 ð28Þ
using all possible values of d. (In G, each component of d can

take on any value between 0 and 1.) So, instead of using

equation (28) to generate a list of equivalent OPDs, we use it

to compare two OPDs. If some choice of d can satisfy equation

(28), then the two OPDs are equivalent.

Whenever we find a new isotropy subgroup not equivalent

to any previously found isotropy subgroup, we save not only

its OPD but also all equivalent OPDs with respect to point

groups. Then, whenever we generate a new isotropy subgroup,

we compare its OPD with those on the saved list using

equation (28). If a solution for d is found, then the two OPDs

are equivalent and we do not keep the new result.

Solving equation (28) for d is not straightforward since both

g2 and g3 contain parameters with unknown values, and since

QðdÞ is not linear in d. However, QðdÞ is linear in cos 2��i and

sin 2��i. If we introduce an arbitrary wave amplitude Ai, then

�c
i ¼ Ai cos 2��i and �s

i ¼ Ai sin 2��i can be treated like two

independent variables. The amplitudes Ai will be normalized

to 1 only after a solution has been found. Lastly, we choose

random values for the parameters in g2. Now equation (28) is a

set of equations linear in the variables �c
i and �s

i , and the

parameters in g1, and is easily solved. We assume that if there

is a solution for one set of random values for the parameters in

g2, then there will be a solution for any set of random values.

Just to be certain that we did not accidentally choose some

special values, we repeat for a second set of random values.

As an example, let us consider a simple case with one active

k vector and two-dimensional IR matrices. We choose the two

OPDs we wish to compare to be ða; 0Þ and ðb; bÞ. The form for

QðdÞ is simply

Qð�Þ ¼ cos 2�� sin 2��
� sin 2�� cos 2��

� �
: ð29Þ

Assigning a random number b ¼ 0:37, equation (28) becomes

�c �s

��s �c

� �
0:37

0:37

� �
¼ a

0

� �
: ð30Þ

Note that there are two equations and three variables, so we

are free to assign any value to one of the variables. We choose

�s ¼ 1. With this choice, we easily obtain �c ¼ 1 and a ¼ 0:74,
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from which we calculate A ¼ 1:414 and � ¼ 0:125. The exis-

tence of a solution indicates that these two OPDs are indeed

equivalent.

APPENDIX B
Isotropy subgroups of commensurate IRs

An algorithm for generating isotropy subgroups was proposed

by Hatch (1984) and then implemented on computer (Stokes

& Hatch, 1984, 1988; Hatch & Stokes, 1984, 1986). Although

this algorithm has been in use for many years as part of the

ISOTROPY software suite, the details of its implementation

have never been published. We add these details here, in some

sense making this paper complete, so that commensurate and

incommensurate cases, and even their superpositions, can be

treated within a common framework.

B1. Lattice of the subgroup

The algorithm for generating isotropy subgroups of some

parent space group G0 for commensurate IRs is very similar to

that for incommensurate IRs described in the body of this

paper. However, there are some important differences. For

one, the translation group TS containing all of the translations

ts of the subgroup GS may be a proper subgroup of the

translation group T0 containing all of the translations of the

parent group G0. In other words, the lattice of the subgroup

may be smaller than the lattice of the parent which requires a

different strategy for identifying the set of active k vectors

fkðAÞg associated with a given isotropy subgroup GS.

Consider the requirement that there exists a nonzero OPD

g which satisfies

DðgSÞg ¼ g ð31Þ
for every operator gS in the subgroup GS, including the

translation operators tS in TS. Our standard form of the IR

matrix DðtSÞ (Stokes et al., 2013) for a translation operator tS is

block diagonal with dðFÞ blocks, such that the ith block of

dimension b is given by

UiðtSÞ ¼
1b=2 cosð2�ki � tSÞ 1b=2 sinð2�ki � tSÞ
�1b=2 sinð2�ki � tSÞ 1b=2 cosð2�ki � tSÞ

� �
; ð32Þ

where ki is the ith vector of fkðFÞg and 1b=2 is a b=2-dimensional

unit matrix. Recall that the OPD can be written as

g ¼ ðg1; g2; . . . ; gdðFÞ Þ; ð33Þ
where gi is a b-dimensional vector corresponding to the ith

vector of fkðFÞg and therefore to the block UiðtSÞ, so that

equation (31) can be written separately for each block,

UiðtSÞgi ¼ gi: ð34Þ
Since equation (34) must be satisfied simultaneously for every

lattice translation tS in TS, it is clear that there is no nonzero

solution for gi unless

ki � tS ¼ integer ð35Þ
for every lattice translation tS in TS. Thus, the requirement

that there exists a nonzero OPD g which satisfies equation

(31) for every lattice translation gS ¼ tS in TS cannot be met

unless equation (35) is satisfied for at least one of the k vectors

in fkðFÞg. The k vectors in fkðFÞg for which equation (35) is

satisfied, if any, are called the active k vectors and form the set

fkðAÞg. Note that any OPD g that satisfies equation (31) for

each of the three basis translations of TS will also satisfy it for

every translation tS of TS.

Now we are ready to describe the steps in the algorithm for

generating isotropy subgroups.

B2. Active k vectors

Step 1. Find every possible set fkðAÞg of nonequivalent active

k vectors. To accomplish this, we identify every nonequivalent

subset of fkðFÞg, and for each subset we find the subgroup TS

comprised of the lattice vectors tS which satisfy equation (35)

for every k vector in the subset. We then determine if any of

the other k vectors in fkðFÞg also satisfy equation (35) for every

lattice vector in TS, and, if so, we discard the subset under

consideration and move on to the next one. The subsets that

survive are ‘complete’ sets fkðAÞg of active k vectors.

B3. New fractional translations in the subgroup

Step 2. For a given set fkðAÞg and associated translation

group TS, we decompose the translation group T0 of the lattice

translations in the parent G0 into cosets with respect to TS:

T0 ¼
P
i

tiTS; ð36Þ

where ti are the coset representatives (reps), which (except for

t1 ¼ 0) become new fractional translations in the subgroup.

B4. Point group HA of the subgroup lattice

Step 3. Given a set fkðAÞg and associated translation group

TS, we find the point operators of G0 which leave the lattice

invariant, i.e. which take each basis translation of TS into a

linear combination of the three basis translations. These point

operators form a point group HA.

B5. Subgroups HS of HA

Step 4. For a given point group HA, we find all of the point

groups HS which are subgroups of HA, and consider them one

at a time, beginning with the largest, which is HA itself, and

ending with the smallest, which contains only the identity

point operator.

B6. Subgroups GS of G0

Step 5. From a given point group HS, we next attempt to

form subgroups GS of G0. For each generator h in HS, we take

the corresponding operator gh in G0 and add to its transla-

tional part one of the coset reps ti in equation (36). These

become the generators of GS. We obtain the other operators in

GS using group multiplication. If the resulting set of operators

obeys a valid multiplication table, it is saved for further

consideration as an isotropy subgroup. All possible ways of

combining the coset reps ti with the generators of HS must be

explored.

12 Stokes and Campbell � An algorithm for generating isotropy subgroups Acta Cryst. (2017). A73, 4–13

research papers

electronic reprint



B7. Order parameter direction

Step 6. We must now test GS to determine if it is an isotropy

subgroup for the selected IR, by requiring that there exists a

nonzero OPD g which satisfies equation (31) simultaneously

for every operator gS in GS, not just for the lattice translations.

B8. Equivalent OPDs

Step 7. For each isotropy subgroup GS, we require that it not

be equivalent to any previously found isotropy subgroup,

which can be tested by verifying that their OPDs are not

equivalent (see Appendix A).

B9. Find GS in standard tables

Step 8. For a given inequivalent isotropy subgroup GS, we

identify it as one of the 230 crystallographic space groups and

determine the transformation (lattice basis vectors and origin)

that takes the operators of the subgroup from the parent

setting to the standard space-group setting of the subgroup

(Hatch & Stokes, 1985).
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